

Dominant Strategies

Game Theory Course: Jackson, Leyton-Brown & Shoham

Game Theory Course: Jackson, Leyton-Brown & Shoham

Dominant Strategies

Domination

- Let s_i and s'_i be two strategies for player i, and let S_{-i} be the set of all possible strategy profiles for the other players
 - What's a "strategy"?
 - For now, just choosing an action ("pure strategy")

Domination

- Let s_i and s'_i be two strategies for player i, and let S_{-i} be the set of all possible strategy profiles for the other players
 - What's a "strategy"?
 - For now, just choosing an action ("pure strategy")

Definition

$$s_i$$
 strictly dominates s_i' if $orall s_{-i} \in S_{-i}$, $u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$

Definition

 s_i very weakly dominates s_i' if $\forall s_{-i} \in S_{-i}, u_i(s_i,s_{-i}) \geq u_i(s_i',s_{-i})$

Equilibria and dominance

- If one strategy dominates all others, we say it is dominant.
- A strategy profile consisting of dominant strategies for every player must be a Nash equilibrium.
 - An equilibrium in strictly dominant strategies must be unique.

Equilibria and dominance

- If one strategy dominates all others, we say it is dominant.
- A strategy profile consisting of dominant strategies for every player must be a Nash equilibrium.
 - An equilibrium in strictly dominant strategies must be unique.

$$\begin{array}{c|c} C & D \\ \hline \\ C & -1, -1 & -4, 0 \\ \hline \\ D & 0, -4 & -3, -3 \end{array}$$

